

Bypassing Firewalls and NATs By Exploiting

Packet-in-Packet Attacks in Ethernet

Ben Seri, Gregory Vishnepolsky and Yevgeny Yusepovsky

Introduction 4

Who we are 5

Motivation for bypassing NATs/Firewalls 6

Packet-in-Packet attacks in wireless protocols 6

Packet-in-Packet attack in Ethernet 8

Ethernet PHYs 8

Ethernet PHY/MAC Interface (MII) 9

MAC layer framing 9

Packet-in-Packet data flow 10

Calculating the CRC complement 12

Possible attack payloads 12

IPv6 Router Advertisement 13

IPv6 mapped IPv4 addresses 14

Search domain and WPAD on windows 14

Bit errors in Ethernet cables? 15

Bit-error-rate in Ethernet cables - Survey results 15

Querying Ethernet statistics from Cisco switches 16

1-click Attack Scenario 16

Physical layer of Ethernet 18

Shielding 18

Types of Ethernet cables 19

Differential noise margin 20

Possible reasons for bit errors in an Ethernet cable 20

Excessive attenuation 21

Impedance mismatch influence on the signal propagation 21

EMI susceptibility 21

Crosstalk 22

Excessive EMI 22

Cable measurements setup 22

Detecting cabling faults with a tester 23

Lab reproduction of cabling faults 24

The crosstalk model 25

EtherOops – ©2020 ARMIS, INC. – 2 TECHNICAL WHITE PAPER

The short model 26

Model scenario for cables connected in series 28

Primitives for a 0-click attack 29

Spoofing IPv4 source addresses on the Internet 29

Google DNS 4-tuples 30

Alternative method: ICMP errors 31

Finding MAC addresses 32

Discovering MACs from Wi-Fi monitor mode 33

Discovering allowed traffic through the firewall using WiFi sniffing 34

Proximity attack using an EMP device 35

Prior research on “EMP simulation” devices 35

Wideband interference generation using a spark-gap radio transmitter 36

Attack model and experimental setup 39

EMP pulse measurements 41

Conclusion 44

EtherOops – ©2020 ARMIS, INC. – 3 TECHNICAL WHITE PAPER

Introduction

Armis Labs discovered novel methods to exploit Packet-in-Packet attacks in Ethernet cables. These
methods can be used under certain conditions to bypass perimeter security devices such as firewalls and
NATs. Bypassing these defenses can allow attackers to mount various attacks:

1. Penetrate networks directly from the Internet
2. Penetrate internal networks from a DMZ segment
3. Move laterally between various segments of internal networks

The ultimate goal of the methods we explore is to inject fully controlled Ethernet packets in internal
networks. We will demonstrate how a single Ethernet packet that is injected using these methods can
be used to allow an attacker to achieve various goals:

1. Establish a Man-in-the-middle position, from the Internet, on DNS and\or HTTP requests of
devices in the internal network by injecting a specially crafted broadcast IPv6 Router
Advertisement. This can be used, for example, to eavesdrop on corporate communications.

2. Gain full control over devices by exploiting 1-day vulnerabilities such as CDPwn and URGENT/11,
which include remote-code-execution (RCE) vulnerabilities that can be triggered by a single
broadcast packet within the network.

The Ethernet Packet-in-Packet attack has been explored in the past, at a Black Hat talk back in 2013,
titled “Fully arbitrary 802.3 packet injection”. However, the researcher back then deemed this attack
impractical for various reasons. Our research presents new methods, and supporting data that indicates
this attack is more practical than previously considered.

This document will offer a deep dive into the mechanisms and conditions that allow Packet-in-Packet
attacks to take place in Ethernet. In addition, this document will detail the various prerequisites for the
Ethernet Packet-in-Packet to be successful, and the various methods we identified in which these can be
challenged.

EtherOops – ©2020 ARMIS, INC. – 4 TECHNICAL WHITE PAPER

https://media.blackhat.com/us-13/US-13-Barisani-Fully-Arbitrary-802-3-Packet-Injection-WP.pdf

Who we are

Armis Labs is Armis’ research team, focused on mixing and splitting the atoms that comprise the IoT
devices that surround us - be it a smart personal assistant, a benign looking printer, a SCADA controller
or a life-supporting device such as a hospital bedside patient monitor.

Our previous research includes:

● CDPwn - 5 Zero Day vulnerabilities in various implementations of Cisco’s CDP protocol, used by a
wide array of their products. The technical whitepaper for this research can be found here:

○ CDPwn - Breaking the discovery protocols of the Enterprise-of-Things

● URGENT/11 - 11 Zero Day vulnerabilities impacting VxWorks, the most widely used Real Time
Operating System (RTOS). The technical whitepaper for this research can be found here:

○ URGENT/11 - Critical vulnerabilities to remotely compromise VxWorks

● BLEEDINGBIT - Two chip-level vulnerabilities in Texas Instruments BLE chips, embedded in
Enterprise-grade Access Points. The technical whitepaper for this research can be found here:

○ BLEEDINGBIT - The hidden attack surface within BLE chips

● BlueBorne - An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks used by
over 5.3 Billion devices. This research was comprised of 3 technical whitepapers:

○ BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day
vulnerabilities and security flaws in modern Bluetooth stacks

○ BlueBorne on Android - Exploiting an RCE Over the Air
○ Exploiting BlueBorne in Linux-Based IoT deices

EtherOops – ©2020 ARMIS, INC. – 5 TECHNICAL WHITE PAPER

https://www.armis.com/cdpwn/
https://info.armis.com/rs/645-PDC-047/images/Armis-CDPwn-WP.pdf
https://www.armis.com/urgent11/
https://go.armis.com/hubfs/White-papers/Urgent11%20Technical%20White%20Paper.pdf
https://armis.com/bleedingbit
https://go.armis.com/bleedingbit
https://armis.com/blueborne
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/blueborne-technical-paper
http://go.armis.com/android-security-vulnerability
http://go.armis.com/blueborne-linux-technical-paper-success

Motivation for bypassing NATs/Firewalls

The majority of 0-click remote-code-execution vulnerabilities require attackers some form of network

adjacency to the victim device -- either direct IP routing, or even layer 2 adjacency. This includes some of

the RCEs we discovered ourselves, such as URGENT/11 and CDPwn, but this is also true for other well

known RCEs such as BlueKeep and EternalBlue, for example. This is simply due to the fact that the

majority of 0-click RCEs are triggered by maliciously crafted packets that are sent to vulnerable services

that accept packets coming from the local network. These types of packets are rarely allowed to enter

the internal network, and are blocked by perimeter security devices such as firewalls and NATs.

In certain cases, RCE vulnerabilities can even be exploited with a single maliciously crafted packet.

CDPwn and URGENT/11 contain vulnerabilities that are an example of this. If an attacker gains the ability

to send a fully controlled packet to a victim device from beyond a network’s perimeter security

defenses, these types of single-packet RCEs may become reachable for an attacker on the Internet.

Many organizations put tremendous fate on their perimeter security defenses, in the hope that they will

prevent the penetration of their networks, and the devices within these networks. This leads to a state

where many devices are left unpatched, vulnerable to critical vulnerabilities that may be exploited by

specially crafted packets sent to them within the internal network. Thus, an attacker that is able to send

fully controlled packets within such networks has tremendous hazardous potential.

Understanding some of the elementary threats to the design of these perimeter security systems is what

led us to look at Ethernet Packet-in-Packet attacks in more depth.

Packet-in-Packet attacks in wireless protocols

The term Packet-in-Packet was probably first coined by Travis Goodspeed in 2011, when he discovered a

way to inject fully controlled layer 2 packets in 802.15.4 (layer 2 protocol used by Zigbee) and 802.11

(Wi-Fi), given the ability to send packets with partially controlled payloads. This sounds quite surprising,

and it relies on the fact that wireless transmissions are inherently unreliable, and this guarantees that bit

flips would randomly occur in transmissions, and eventually, the headers of the lower layers of the

packet may get corrupted.

When this happens, the receiver of such a packet can be fooled to interpret the payload of the packet as

an entirely new packet, including the previously uncontrolled low-level headers. An attacker that has the

ability to even partially control the payload of such packets may be able to inject fully controlled layer 2

packets.

EtherOops – ©2020 ARMIS, INC. – 6 TECHNICAL WHITE PAPER

Preamble Sync Payload

00 00 00 00 a7 0f ...

00 00 00 00 a^ 0f ... 00 00 00 00 a7 ...

 ^ 802.15.4 Packet-in-Packet!

In the example above, a7 is the syncword of the layer 2 protocol used by Zigbee (802.15.4), and when it

gets corrupted, the receiver will continue searching for another preamble and syncword inside the

packet. A crafted payload that contains these magic numbers will get interpreted from that point on as a

completely new packet.

A more recent Packet-in-Packet attack was devised in 2015 for non-encrypted Wi-Fi. The paper titled

Injection Attacks on 802.11n MAC Frame Aggregation describes a method to target the MAC frame

aggregation feature of Wi-Fi access points to exploit Wi-Fi Packet-in-Packet.

Ultimately, a similar concept is used whenever Packet-in-Packet attacks are exploited in wireless

protocols -- partially controlled packet payloads, together with bit flips in the air, resulting in arbitrary

packet injection.

The concept of Packet-in-Packet isn’t new, but it was mainly explored in wireless protocols. In our case,

however, we wanted to explore methods to bypass firewalls and NATs, and these are connected to

wired networks. Does it even make sense for this to work on wired protocols?

To answer this question, let’s first dive deeper into the physical attributes of Ethernet.

EtherOops – ©2020 ARMIS, INC. – 7 TECHNICAL WHITE PAPER

https://github.com/rpp0/aggr-inject
https://github.com/rpp0/aggr-inject/blob/master/paper/ampdu_inj_wisec2015.pdf

Packet-in-Packet attack in Ethernet

Ethernet PHYs

The most popular Ethernet cables are copper cables that use either FastEthernet (which is 100 Mb/s)

and Gigabit Ethernet. These two PHYs have very different encodings on the physical layer.

In FastEthernet, the PHY encoding uses 5 bit symbols on the wire for every 4 bits of data:

4B5B Encoding table, as used by FastEthernet PHY (100Mb/s), from Wikipedia

As can be seen in the table above, the majority of the symbols are data symbols, and additional symbols

are used for control -- such as start of frame and end of frame. Gigabit encoding is different, but it also

uses a similar approach for delimiting frames by using start and end of frame symbols.

The important thing to understand is that there isn’t any error detection mechanism at these PHY layers,

other than the inherent mechanism to detect invalid symbols (not all symbols are valid). So if, for

instance, a bit flip has occurred on the wire, the PHY layer will be able to detect this only if the corrupted

symbol is now a non-valid symbol. One data symbol, for example, might get replaced with another data

symbol, if a bit flip has occurred on the wire.

EtherOops – ©2020 ARMIS, INC. – 8 TECHNICAL WHITE PAPER

https://en.wikipedia.org/wiki/4B5B#Encoding_table

Ethernet PHY/MAC Interface (MII)

An Ethernet cable is never connected directly to a CPU or microcontroller, but rather, it’s usually
connected to an Ethernet PHY chip. That PHY chip is usually connected to the CPU using a hardware
interface called Media Independent Interface (or modern versions of it, such as GMII or RGMII, etc.). The
job of the PHY chip is to translate the Ethernet symbols from the wire, into a parallel 8-bit bus carrying
our familiar layer 2 data bytes, alongside several out-of-band signals that are sent over dedicated lines -
such as RX_DV (RX Data Valid signal), RX_ER (RX Error signal), etc. The RX_DV line is used for delimiting
frames, and it is driven by the PHY in response to the special start and end of frame symbols encoded on
the wire.

So while on the PHY layer, special start and end of frame symbols are used to delimit Ethernet frames,
on the GMII bus, these signals are translated to the RX data valid signal.

MAC layer framing

Despite the existence of framing done out-of-band by the PHY layer, the MAC layer also implements a
separate framing mechanism. This mechanism is transferred in-band, on top of the framing mechanism
used by the PHY layer. The familiar Ethernet frame will be prepended with preamble bytes and a
start-frame-delimiter byte on the wire. In addition, a CRC32, called the FCS is appended to the end of the
frame.

In the diagram above, we can see what data actually appears on the wire as part of an Ethernet frame,
and how it's handled. First, a start symbol appears on the wire (called SSD - Start-Stream-Delimiter). This

EtherOops – ©2020 ARMIS, INC. – 9 TECHNICAL WHITE PAPER

is the out-of-band symbol used by the PHY layer to indicate the beginning of the frame, and the PHY chip
will translate it to a high RX_DV line on the GMII bus, indicating that there's an incoming frame.

From that point on, the PHY will convert the encoded symbols to data bytes on the parallel bus.
However, the first bytes of this data aren't actual data, but rather, they are the in-band signaling bytes
used by the MAC layer to indicate the beginning of a frame. They begin with a preamble sequence (bytes
with the value of 0x55) and a start frame delimiter byte (an SFD), that has the value of 0xD5.

When the CPU sees the RX_DV line go high it starts waiting for an SFD byte on the RXD port. All bytes
before that are treated as the preamble. After these initial bytes, comes the familiar layer 2 payload,
which is the Ethernet frame with headers and payload. When the end of frame symbol arrives on the
wire, the RX_DV line goes low, and indicates to the CPU that the last 4 data bytes - are, again, not
actually data, but rather, the CRC32 of the entire received frame.

Since the MAC layer responsible for the MAC framing (the preamble, SFD, and FCS), it is the one that will
validate the validity of the FCS and not the PHY layer. This means that potentially corrupted frames may
arrive all this way, to the CPU, without being dropped by the PHY.

Packet-in-Packet data flow

We are now ready to connect the dots, and see why this design is susceptible to a Packet-in-Packet
attack:

In the diagram above we can see the different processing stages of an Ethernet packet, in which the SFD
byte got corrupted on the wire. In this case, the 0xD5 byte got corrupted and turned, for example, into a
0xD4. As noted above, from the perspective of the PHY chip, the packet starts when the start symbol
(the SSD) is received on the wire, and it ends when an end symbol (the End-Stream-Delimiter, the ESD) is
received. These symbols are not corrupted, and the PHY will use them to drive the RX_DV line. However,
from the perspective of the MAC layer, on the CPU, the packet starts when the RX_DV line goes high,
and an SFD byte is received on the RXD bus. Since the first SFD byte will be corrupted, the MAC layer will
continue waiting to receive it on the bus. If the packet was specially crafted, the attacker could place a
0xD5 somewhere inside the packet’s payload. If this is the first 0xD5 byte in the frame it will be picked
up as the SFD. All the previous bytes will be considered to be the preamble sequence! In all the NIC

EtherOops – ©2020 ARMIS, INC. – 10 TECHNICAL WHITE PAPER

implementations we've tested, we didn't find any that limit the length of this preamble sequence, or
even check its value!

As noted above, once the RX_DV line goes low, the MAC layer will know that the packet has ended, and
interpret the last four bytes as the FCS (the CRC32 of the packet, starting from the SFD). So although the
bit-flip of the SFD managed to move the beginning of the packet to the attacker’s payload, the end of
the packet, and the expected CRC of the packet cannot be controlled by the attacker.

Therefore, two conditions are required for the corruption of the SFD to turn into a Packet-in-Packet: The
corrupted symbol must become some other, valid data symbol; The CRC32 at the end of the frame must
now be correct for both the original packet, and the new, inner packet.

The first of these two conditions will naturally occur if bit-flips are randomly occurring on the wire. Not
all corruptions of the SFD byte will lead to a valid data symbol in its place, but some of them will, and
because the bit-flips occur randomly, they will eventually land on valid data symbols as well.

The second condition is more tricky. Turning a corrupted SFD byte to a Packet-in-Packet condition will
only work if the attacker knows the exact contents of the headers of the original packet, so he can
anticipate the FCS (the CRC32) of this packet in advance, and cause a CRC collision between the outer
packet, and in the inner packet (the Packet-in-Packet). Since the attacker is the one generating the
original packet, he already knows the majority of its content in advance. However, since the packet is
passing a NAT, and possibly several routers inside the internal network, before the corruption takes
place, the values of the source/destination MAC addresses in the Ethernet frame, and the internal
destination IP are not necessarily visible to him. The attacker will have to find those out in advance
(more on that in the section “Finding MAC addresses”). Once the full content of the original packet is
known to the attacker, he can pre-calculate a CRC collision between both inner and outer packets, and
the Packet-in-Packet condition will occur.

EtherOops – ©2020 ARMIS, INC. – 11 TECHNICAL WHITE PAPER

In the diagram above, we can see an Ethernet packet before, and after it’s SFD byte was corrupted. We
can see that the original packet is a UDP packet in which the attacker controls the payload, and has
placed four bytes that will act as a CRC32 complement (more on that in the next section), and than a
preamble byte (0x55), and a new SFD byte (0xD5). After it, begins the new Ethernet header of the
injected packet. Once the SFD gets corrupted, the new packet will be re-interpreted, as shown at the
bottom of the above diagram. In this instance, the attacker has chosen to inject an IPv6 Router
Advertisement packet, of which he has full control.

Calculating the CRC complement

As noted above, the CRC32 at the end of the original, outer packet, also appears at the end of the new,
inner packet. Therefore, the CRC must be correct for both packets simultaneously. As it happens, CRC32
is not a cryptographic hash or anything of the sort, and is easily malleable. In order to force the CRC32 of
any block of data to become anything else, a four byte complement can be calculated and appended to
the data. With this in mind, the final structure of the outer packet is shown below:

Here, the attacker controlled portion of the outer packet begins right after the outer packet header, and
before the CRC32. The attacker can choose an arbitrary inner packet, and then calculate its
corresponding CRC normally. Then, a four byte complement can be computed, and added before the
inner packet, such that it is not part of the inner packet. This complement is chosen such that it forces
the CRC32 of the outer packet to be the same as the one of the inner packet.

A good explanation of the algorithm to force the CRC32 of any data to be any chosen value can be found
here. The method essentially calculates the difference between the current CRC and the desired CRC,
then calculates a polynomial power mod G(x), and calculates a reciprocal mod G(x), then calculates a
product mod G(x), where G(x) is the CRC generator polynomial (as defined for CRC32).

Possible attack payloads

The attack described in this paper requires the attacker to send lots of packets, each containing a

Packet-in-Packet payload, at the highest rate possible. When these packets are sent over a cable that

experiences bit-errors, a bit flip might happen on the SFD byte, causing the Packet-in-Packet condition to

occur. The probability of this happening for any packet is quite low, and the attacker compensates this

by sending as many packets as possible. Still, it may take a long time for the right bit flip to occur.

Therefore, it’s reasonable to assume that this attack can only inject a single packet in an attack that can

take hours.

This effectively mandates the attack payload to be limited to a single packet. There are quite a few past

examples of a single packet being enough to DoS devices, or even exploit RCE vulnerabilities. Here are a

few recent examples we’re familiar with:

EtherOops – ©2020 ARMIS, INC. – 12 TECHNICAL WHITE PAPER

https://www.nayuki.io/page/forcing-a-files-crc-to-any-value

1. CDPwn vulnerabilities in parsing of the CDP protocol by Cisco routers, switches and VoIP phones

(CVE-2020-3119, CVE-2020-3111)

2. Urgent11 vulnerabilities in the TCP/IP protocol stack of the VxWorks OS, used by a large

percentage of manufacturing, medical and critical infrastructure devices (CVE-2019-12256)

3. A 2018 ICMP of death exploit of all Apple MAC/iOS devices in the XNU kernel (CVE-2018-4407)

However, additional vulnerabilities are not required in order for a single injected packet to cause

damage to the security of a network. Certain packets that will be handled by all standards compliant

network devices are quite powerful by design.

IPv6 Router Advertisement

An IPv6 Router Advertisement (RA) packet is an ICMPv6 packet that notifies devices about the existence

of an IPv6 router on the network segment. It is usually sent as a broadcast on every segment, and it

configures IPv6 routes, DNS servers, and more, on every IPv6 enabled device that receives it.

All modern OSs support IPv6, and it is turned on by default on every network interface. An actual

working IPv6 network is not required for this packet to have an effect, as obviously this is a configuration

packet that’s meant to set up networking in the first place.

The RA packet itself is reminiscent of the more familiar IPv4 DHCP offer packet, since it is able to

configure pretty much the same settings on the receiving device. However, an important difference is

that DHCP is a request-response protocol, where a client device has to first request configuration, and

only then accept a response. An IPv6 RA packet can arrive unsolicited, and the receiver will apply its

configuration without requesting one immediately prior. This is similar to the ancient Reverse ARP

protocol that was in use before DHCP was invented.

Below is an example of such a packet setting up an attacker controlled DNS server and search domain on

a target device:

EtherOops – ©2020 ARMIS, INC. – 13 TECHNICAL WHITE PAPER

IPv6 mapped IPv4 addresses

In the above illustration, the DNS server is set to the address ::ffff:1.2.3.4 which is actually what’s

known as an “IPv6 mapped IPv4 address”. This is a feature of IPv6 addresses, where actual IPv4

addresses are mapped onto the IPv6 address space, and the intent is to actually use the IPv4 protocol to

reach them. So even though it’s technically an IPv6 address being configured here, these are really IPv4

DNS servers and will be used as such. Therefore, a working IPv6 network is not required in order to add

DNS servers this way.

Search domain and WPAD on windows

Windows Proxy Auto Discovery (WPAD) is an ancient feature of Windows, still enabled by default, which

attempts to detect a configuration for HTTP proxy servers that are required by the local network. There

are multiple ways for network administrators to configure WPAD, one being to set up an HTTP server on

the network that would be able to answer an HTTP request to the following URL:

http://wpad/wpad.dat

Of course, “wpad” isn’t a valid domain name. In this case, a “search domain” is utilised. A search domain

can be configured on a network via a DHCP configuration, RA, or manually. It is basically a suffix that’s

appended to all unresolvable domain names, in order to attempt and resolve them again with the suffix

appended. So, for example, if the search domain is set to be “attacker.com”, then the above HTTP

request will be effectively performed to:

http://wpad.attacker.com/wpad.dat

The wpad.dat file configures which proxy server to use for which URL. This configuration is respected by

any windows application or feature that respects the OS wide proxy configuration. This includes all

modern web browsers. The format of the configuration is explained here.

EtherOops – ©2020 ARMIS, INC. – 14 TECHNICAL WHITE PAPER

https://findproxyforurl.com/example-pac-file/

Bit errors in Ethernet cables?

For this attack to work, bit-flips need to randomly occur on target Ethernet cables. In fact, the belief that

these are unlikely to occur in wired cables is what led researchers in the past to dismiss this type of

attack. At a Black Hat talk back in 2013, titled “Fully arbitrary 802.3 packet injection”, the researcher

deemed this attack impractical, due to the following reason:

“…the reliability and extremely low error rate of wired cables make it [the Ethernet Packet-in-Packet

attack] unrealistic.”

We performed a survey on Ethernet cables throughout a wide variety of organizations in which Armis

operates, to find out whether this common belief is true. We were surprised to discover that

imperfections in Ethernet cables are actually much more prevalent. Leveraging data from about 500K

active switch ports used in enterprise networks, we found that about 1.8% of them experience a

significant amount of bit-errors. According to the industry standard, the maximum allowed bit-error-rate

(BER) in Gigabit Ethernet cables, for example, is one bit error in 10 billion bits. The high-error-rate cables

identified in our survey are ones that experience a BER that is greater than this maximum BER, as

defined by the industry standard. In these types of cables, a Packet-in-Packet attack can occur within a

reasonable time (hours or less).

Bit-error-rate in Ethernet cables - Survey results

When we looked across different segments of our install base, we noted that the rate of errors varied

slightly between them:

In Gigabit Ethernet cables that experience a high-error-rate as defined above, a bit can flip once every 10

seconds, and a Packet-in-Packet condition can then occur within hours or less.

One way for an attacker to overcome the prerequisite of bitflips randomly occurring in Ethernet cables is

to simply target an organization that might use imperfect cables, and hope the benign traffic that he

sends to the network traverses through one of them. An alternative method that relies on an ability to

induce bit-flips in non-faulty cables is also something that we’ve explored (more on this later).

EtherOops – ©2020 ARMIS, INC. – 15 TECHNICAL WHITE PAPER

Querying Ethernet statistics from Cisco switches

In order to locate low-quality cables that might experience significant bit-errors, it is possible to query
certain managed switches for various statistics that count the number of symbol errors that are a
possible side-effect from random bit-flips occurring in transmission.

In Cisco Catalyst switches these can be queried by using the following command in the Cisco shell:

Alternatively, using SNMP to query Cisco switches for these statistics is also possible via the OID named

dot3StatsSymbolErrors (1.3.6.1.2.1.10.7.2.1.18).

1-click Attack Scenario

Now that we’ve outlined the various hoops that an attacker needs to jump through, to carry out a
successful Ethernet Packet-in-Packet attack that can bypass firewalls/NATs, we can devise an end-to-end
attack scenario. In this attack scenario, we assume that a faulty Ethernet cable exists within the network,
in such a way that a significant amount of bit-flips occur on it. In addition, the attacker in this scenario
has prior knowledge of the network including MAC addresses and where the faulty cables lie.

As described earlier, the Ethernet Packet-in-Packet attack works by relying on the fact that when

bit-errors randomly occur in transmissions, an attacker can leverage and abuse them to inject fully

controlled packets when they occur in a certain way.

How an Ethernet Packet-in-a-Packet Attack can work

The following outlines how such an attack could happen:

EtherOops – ©2020 ARMIS, INC. – 16 TECHNICAL WHITE PAPER

1. The attack starts by an attacker sending a link to a user inside a target network that leads to an

attacker-controlled website:

a. The browser on the user machine will use WebRTC to initiate a UDP connection to the

attacker’s server. This is not a vulnerability, but rather a built-in feature within browsers

to allow UDP communications for a variety of streaming applications.

b. The outgoing UDP packet from the browser will be registered by the NAT as a new UDP

“connection”, meaning the NAT will now allow incoming packets from the attacker to

traverse back to the victim device. Since UDP is a connectionless protocol, the NAT will

allow these incoming packets to traverse, until a timeout passes from the last received

or sent packet. Meaning the attacker can now send a stream of benign UDP packets to

the victim device that will encapsulate the Packet-in-Packet payload, from the Internet.

The stream can continue even after the victim closes the browser!

2. The stream of benign UDP packets will traverse through the faulty cable, and some of these will

experience bit-flips. Eventually, the SFD byte of one of these packets will bit-flip, and that will

enable the Packet-in-Packet condition. The attacker will craft the payload of these UDP packets

as described in a previous section - a CRC32 complement will be added to the payload so the FCS

of both inner and outer packets will collide, and a new preamble and SFD bytes will be placed

before the inner packet.

3. When the Packet-in-Packet condition occurs, the Ethernet controller on the receiving end will

interpret the payload of the packet (that is attacker-controlled) as an entirely new packet. This

will allow the attacker to control low-level headers of injected packets - essentially sending fully

controlled Ethernet frames. These types of packets would have been otherwise blocked by

firewall/NAT solutions.

Once the attacker is able to inject an Ethernet packet to the internal network, he can send, for example,

any of the packets described in the section “Potential attack payloads”. These can lead to the takeover

of vulnerable devices, or as illustrated in the diagram above, a Windows device can be the target of the

aforementioned IPv6 Router Advertisement packet. As described earlier, this packet can lead the

attacker to a Man-in-The-Middle position on DNS and HTTP traffic of Windows devices – by registering a

Search Domain and abusing the Windows Proxy Auto Discovery (WPAD) feature. It is important to note

that both IPv6 and WPAD are enabled by default in Windows devices (even in an IPv4 network).

A video of this demonstration is available here.

EtherOops – ©2020 ARMIS, INC. – 17 TECHNICAL WHITE PAPER

https://youtu.be/7sLEQQvJDEw

Physical layer of Ethernet

An Ethernet cable, usually Cat 5e or 6 copper cable, consists of four pairs of wires. While only two pairs
are used in FastEthernet (100 Mb/s), Gigabit Ethernet and above requires all four pairs. Each symbol is
transformed into a voltage difference between the two wires in a pair (differential pair).

While a differential signal accommodates for ground differences, and the reference voltage drops along
lengthy cables, there is an additional challenge of a coexistence in a real life environment. Due to the
fact that a current may be induced in any wire with external electromagnetic radiation, and any wire
which passes either power or a signal also emits such radiation (Maxwell’s laws), the electrical
devices/cables may potentially interfere with each other. This phenomenon is called electromagnetic
interference (EMI). In the case of the cable, an EMI might be either external to the cable or induced by
the pairs inside the cable from one to another (crosstalk).

The coexistence of electrical devices and cables is mitigated by electromagnetic compatibility (EMC)
standards and regulations, required for any consumer equipment. Those standards and regulations
ensure both the immunity and low enough emission levels for any equipment. In the case of an Ethernet
cable, the minimal required level of EMC is achieved by a twisted pair wiring technique.

Illustration of a twisted pair

A twisted pair is a type of wiring where both wires in the differential pair are twisted together. As a

result, the induced current by electromagnetic emission is almost identical on both wires (The similar

signal on both wires is called a common mode, and the differential signal is called a differential mode.

Using this terminology, each signal is a sum of the common and the differential modes). I.e - Only a very

small part of the EMI results in a differential induced current.

The subtraction of the two voltages in a differential pair, cancels out the common mode. Thus, a twisted

pair is susceptible almost solely to the small part of the differentially induced EMI. In addition, the

opposite signal in the two wires of the differential pair ensures that the interference created by each is

mostly canceled out by the other. This way, the twisted pair wiring greatly improves EMC, by reducing

electromagnetic radiation and crosstalk, and improving rejection of external electromagnetic

interference.

Shielding

In addition to the twisted pair geometry of wiring, the electromagnetic compatibility can be further
increased by a shield, which is an electrically conductive barrier, that significantly attenuates both the
emission and the induced current from EMI. The shield may be applied to each of the twisted pairs
individually, an outer shielding for the whole cable, or both. An outer cable shielding provides both the

EtherOops – ©2020 ARMIS, INC. – 18 TECHNICAL WHITE PAPER

protection from external sources and attenuates the emitted radiation, while the shielding for each of
the pairs provides additional crosstalk protection.

The information about cable shielding is standardized by ISO/IEC 11801:2002 (Annex E) and uses the
following abbreviations: an x/yTP shielding stands for x type of external shield for the whole cable, and a
y shielding for each of the twisted pairs (TP in abbreviation). The three most common types are the
unshielded cable (UTP), the cable in which there is only an outer layer of shielding (F/UTP), and the cable
in which each of the twisted pairs is shielded (U/FTP, which is sometimes mistakenly referred by cable
manufacturers as STP).

Different shielding used by different types of cables

Types of Ethernet cables

In addition to the shielding abbreviation, the ISO/IEC 11801 also standardized several cabling categories
which differ in a number of parameters, including the maximum frequency, electromagnetic
compatibility, maximum length, and testing procedure. This standard defines the most commonly used
Ethernet cables, from the lower-end of Cat5 to the Cat6 and above.

The original Cat5, was the lowest-end Ethernet cable, for up to 100Base-TX Ethernet, with a length of up
to 100 meters. It was defined by ANSI/TIA/EIA-568-A and later by ISO/IEC 11801, IEC 61156, and EN
50173. It was deprecated in 2001 and superseded by Cat5e, which is now the most commonly used
cable. The Cat5e standard guarantees lower crosstalk than the Cat5, and communication for up to
Gigabit Ethernet speeds. Whereas the Cat5 was UTP, Cat5e cable can optionally have foil on either the
whole cable or each single twisted pair. Thus, it comes in either UTP, F/UTP, or U/FTP.

Cat6 cable ISO/IEC 11801 2nd Ed. (2002), ANSI/TIA 568-B.2-1, extend the supported Ethernet speeds to
up to 10G-BASE-T, but, with only a 55 meters limit for the 10Gbit Ethernet.

In addition to the maximal distance and bandwidth, the standards for each cable define the maximum
attenuation, impedance range, propagation delay, electromagnetic characteristics, operating
temperatures, NEXT (near end crosstalk, which is the most basic type of crosstalk and the most relevant
for this discussion), and more. The most important specifications are summarized in the table below:

EtherOops – ©2020 ARMIS, INC. – 19 TECHNICAL WHITE PAPER

https://en.wikipedia.org/wiki/ISO/IEC_11801
https://en.wikipedia.org/wiki/ISO/IEC_11801
https://en.wikipedia.org/wiki/ISO/IEC_11801
https://en.wikipedia.org/wiki/Category_5_cable
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/TIA/EIA-568
https://en.wikipedia.org/wiki/ISO/IEC_11801
https://en.wikipedia.org/wiki/IEC_61156
https://en.wikipedia.org/w/index.php?title=EN_50173&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=EN_50173&action=edit&redlink=1

 Cat5 Cat5e Cat6

Frequency 100MHz 100MHz 250MHz

Attenuation (min. at 100MHz) 22dB 22dB 19.8dB

Characteristic impedance 00Ω 5%1 ± 1 00Ω 5%1 ± 1 00Ω 5%1 ± 1

NEXT (min. at100 MHz) 32.3dB 35.3dB 43.3dB

Return Loss (min. at 100MHz) 16dB 20.1dB 20.1dB

Delay Skew (max. at 100m) N/A 45ns 45ns

Supported Networks 100BASE-T 1000BASE-T 100BASE-T,
1000BASE-TX

Differential noise margin

As an example, 100Base-TX uses 3 differential voltages -1V, 0V, 1V (See source). The Cat5 and Cat5e 1

cables have 22dB attenuation for 100m (See sources ,), whereas Cat6 has a bit lower attenuation. The 2 3

Cat5e cable is defined to work for up to 100 meters. The receiver should deal with an up to 22dB
attenuation with an “acceptable BER”, This also defines the spec for the minimal voltage level for an
Ethernet signal, near the receiver:

0 mVV min = 10(20 log(1[V]) − 22)/20* ≈ 8

This means that a constellation of three voltage levels of -80mV, 0mV +80mV can be met in real life conditions.
At those conditions, the noise margin cannot be higher than 40mV, and should be ensured by EMC.

Possible reasons for bit errors in an Ethernet cable

A non zero BER is very common in communication systems. When valid equipment is properly used, The
BER can be kept very low by the EMI standardizations and the EMC regulations. However, there are
several cases in which the BER may rise above the acceptable threshold:

1. Cable damage that causes an excessive attenuation
2. Cable mismatch that causes a return loss, and interference between the current signal and

previously returned one
3. A susceptibility to EMI due to impedance mismatch (explained below), incorrect shielding, or

shield damage
4. Crosstalk between the Ethernet pairs, or even an additional, close cable
5. An EMI that is higher than what is allowed to be created by consumer electronics, with an

Electromagnetic compatibility (EMC) license

1 David A. Weston (2001). Electromagnetic Compatibility: principles and applications. CRC Press. pp.240–242. ISBN
0-8247-8889-3. Retrieved June 11, 2011
2 https://www.farnell.com/datasheets/2762432.pdf
3 https://www.cablek.com/technical-reference/cat-5---5e--6--6a---7--8-standards

EtherOops – ©2020 ARMIS, INC. – 20 TECHNICAL WHITE PAPER

https://books.google.com/books?id=392CdZHdUDEC&pg=PA240
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-8247-8889-3
https://www.farnell.com/datasheets/2762432.pdf
https://www.cablek.com/technical-reference/cat-5---5e--6--6a---7--8-standards

The following sections detail each of these cases.

Excessive attenuation

An excessive attenuation is almost exclusively a result of some degradation to the conductor. In an
operating environment, such degradations are usually caused by cable stress through rolling, bending in
a single point, torsion, or a random flexing. In addition to the obvious damage from stress beyond the
elastic region of the conductor, even repeated stress, below the point of 15% elongation can cause
permanent damage and an attenuation increase (See source for the above points). Similar damage can 4

also be caused by the shear and torsion stress, or a high weight put on the cable (for example - someone
steps on the cable), but not as common as the flex damage. It is important to mention that such point
damage may cause a wire to be almost torn or even pass the signal only when the cable is bent in
specific ways.

Another very common reason for conductor fatigue that causes excessive attenuation is a stress in the
termination point (i.e connector). This can happen from bending, vibrations, momentum from a cable
weight on unsupported connectors, and poorly crimped or soldered connectors.

In the case of a sole excessive attenuation, the total attenuation is a sum of all attenuations (in dB) along
the way (Ignoring impedance mismatch). In the case of a valid cable, the attenuation is given by the
multiplication of length by the attenuation per unit length (22dB per 100m in Cat5e). Any additional
attention should be added to this number, which may cause the total attenuation to exceed the
maximum allowed 22dB, for a 100-meter cable, even for a much shorter cable.

Impedance mismatch influence on the signal propagation

An impedance of the cable is governed by the geometry of the differential pair. Any change of the
geometry along the cable, including point damage due to mechanical stress, shield degradation, a
change in the twists, and the distance between the pairs in the cable, causes a mismatch in the
impedance. This affects cable performance in two ways:

1. Any mismatch causes a return loss (i.e - part of the signal, returns to the source. Thus, the
remaining transmitted signal strength is lessened). As it reduces signal strength, it may be
treated as a part of an overall attenuation.

2. Two mismatches or more, cause interference, in which the signal returned from a mismatch
point, reaches the previous mismatch point, and is reflected yet again. Then, it interferes with
the original signal. This effect will cause a variation in the logical level of the original signal and,
for this discussion, may be treated as a noise, which further reduces the noise margin.

EMI susceptibility

Any electrical device or equipment, emits some level of electromagnetic radiation. The cable is
protected from the interference of this radiation by the twisted pair geometry and sometimes a shield.
Damage to either of the two may cause the cable to be inappropriately susceptible to EMI. A shield

4 Moll, Kenneth W. and McCarter, David R., W. L. Gore & Associates, Inc., Flex Life in Cables, Electronic Packaging
and Production, June 1976, p. 29-30, 3435.

EtherOops – ©2020 ARMIS, INC. – 21 TECHNICAL WHITE PAPER

degradation is especially common, and may happen due to aging, UV exposure (See source), humidity, 5

harsh temperature conditions, and mechanical damage (See source). In addition, mismatch points are 6

excessively susceptible to external EMI.

The EMI causes an induced current, which may be treated as noise with a given voltage level. An
excessive susceptibility to EMI would result in a higher noise level from the same EMI source. If the level
of the noise surpasses the calculated noise margin of the cable of 40mV, a bit flip will occur.

Crosstalk

Crosstalk is a special case of EMI susceptibility (and emission), in which the EMI is between two digital
signals. The most common type of crosstalk is crosstalk between separate differential pairs in the same
cable, called the near end crosstalk (NEXT). Whereas an STP cable has a shield for each pair to reduce
the amount of NEXT, A UTP and F/UTP or FTP cables lack this protection, and thereby are more
susceptible. The minimal requirement for crosstalk protection is specified in each Ethernet cable
category, however, any damage to the cable, which causes either a mismatch, or a shield degradation,
may increase the level of crosstalk above the acceptable level. In FastEthernet, the effect of a NEXT, for
our discussion, can be treated as additional noise.

A cable carrying 1000BASE-T is not susceptible to NEXT, but it is susceptible to crosstalk caused by a pair
from another nearby Ethernet cable, called Alien Crosstalk (AXT). This type of crosstalk is very common,
due to a large number of cables commonly running closely and in parallel to each other. Both the outer
shield of F/UTP, and the shield for each pair in the STP cable may give some level of protection from
AXT. The best protection, however, is achieved with a cable that has both an outer shield and a separate
shield for each pair.

Excessive EMI

The EMI can cause a degradation in Ethernet communication performance not only because of excessive
cable susceptibility to the electromagnetic radiation, but also by an excessive EMI from an external
source that exceeds the EMC regulation. Such a source may be a device or equipment, creating a high
EMI, which can cause an unacceptable BER, even in a perfectly undamaged cable. One such example is a
proximity to high voltage lines. (See source) 7

Cable measurements setup

Two types of equipment were used for cable measurements: a Fluke Cable Qualification Tester with a
dedicated model for Ethernet cable analysis, and an Electrical Network Analyser.

In the case of a network analyser, the differential pairs were connected directly to the network analyser
ports with an Ethernet connector, soldered directly to an SMA connector. Such setup creates a
mismatch, due to the 50-ohm impedance of the network, and 100-ohm impedance of the differential
pairs. Despite the seemingly large impedance mismatch, this simplistic setup, as explained below,
provides enough precision for the purpose of our research.

5 https://www.elandcables.com/the-cable-lab/faqs/faq-what-are-the-main-causes-of-electrical-cable-failure
6 https://www.gore.com/resources/tech-note-understanding-cable-stress-and-failure-high-flex-applications
7 https://www.nexans.com/US/files/DCCC03040901R1.pdf

EtherOops – ©2020 ARMIS, INC. – 22 TECHNICAL WHITE PAPER

https://www.elandcables.com/the-cable-lab/faqs/faq-what-are-the-main-causes-of-electrical-cable-failure
https://www.gore.com/resources/tech-note-understanding-cable-stress-and-failure-high-flex-applications
https://www.nexans.com/US/files/DCCC03040901R1.pdf

This setup has two mismatch points, one is near the transmitting port, and the other is at the end of the
cable. The former mismatch point gives the following return loss:

0 og Γ 20 og 0 og .5 dB S11−near−end−mismatch = 1 * l (| |2)
= * l (|

|
| Z+Z0

Z−Z0 ||
|) = 2 * l (3

1) = − 9

Whereas, the further mismatch point, for a cable of at least 20 meter, gives:

 2 − 2 0/100) . 8.3dBS11−far−end−mismatch ≈ * (2 * 2 − 9 = − 1

The far end of the cable gives quite negligible return loss, and is close in its value to an average
measurement precision with a network analyzer. Moreover, it is not far from the 20dB return loss of a
typical Cat5e cable. For this reason, for a long enough cable, the measurement can be treated, with a
good approximation, as a single mismatch point.

For the return loss, the 9.5 dB defines the maximal precision. However, in 100BASE-TX Ethernet, each
pair is either TX or RX, which renders the transmission loss as almost the sole, relevant parameter:

0 og τ 10 og 1 − .51 dB S21−near−end
= 1 * l (| |2)

= * l (− Γ| |2)
= 0

Thus, for measurements with an accuracy of less than 1dB, this setup may give good enough precision.

A measurement of a transmission loss (blue), and the return loss from each terminal (yellow and green)
of a valid 60 meters cable, in our setup:

Network Analyzer screenshot. Frequency range is between 50MHz and 200MHz

Detecting cabling faults with a tester

Portable devices, such as the Fluke Cable Qualification Tester can be used in order to detect and classify
cabling faults. This was used around the offices of the authors of this paper, in order to find what turned
out to be a small number of misbehaving cables.

EtherOops – ©2020 ARMIS, INC. – 23 TECHNICAL WHITE PAPER

The first step to finding such cables in real world networks is to query the statistics of switch ports, on all
managed network switches that support such queries (as described in the section “Querying Ethernet
statistics from Cisco switches”). Then, knowing which ports have elevated error rates, it’s possible to
physically approach the potentially faulty cables and test them individually.

Testing a particularly faulty cable

In the case above, a cable that has a short between 2 wires was located! This particular specimen works
only at FastEthernet speeds, since otherwise it does not have 4 working pairs. For FastEthernet, only 2
are enough. Therefore in this example, the 1-2 pair is active, and the 7-8 pair is unused. The short thus
causes wire 8 to act as an “antenna” connected to the 1-2 pair, causing reflections and interference.

Since auto-negotiation is usually enabled, the switch port falls back to FastEthernet when this cable is
connected, as the initial attempt to use Gigabit fails. This cable has very high error rates, in the range of
1/107.

Lab reproduction of cabling faults

One of the objectives of this paper is to allow the reader to understand and reproduce the
Packet-in-Packet attack over faulty Ethernet cables so this attack can be further researched and
understood. However, it would be unreasonable to expect the reader to seek out real-world faulty
cables in order to do this. Therefore, below are a few methods that we’ve determined to be a reliable
way to simulate such faulty cables. These methods do not attempt to reproduce realistic faults. That is,
these faults are extreme both in the sense that they’re not likely to occur naturally, and also in the sense
that they cause a very high BER. On the other hand, the faults are not excessively bad, such that the
cable ceases to work entirely. Regardless, the effects caused by these faults are essentially the same as
with real world faulty cables, therefore these reproductions are good enough to use for testing
purposes.

EtherOops – ©2020 ARMIS, INC. – 24 TECHNICAL WHITE PAPER

The crosstalk model

The first method relies on deliberately corrupting 2 separate cables, and placing them close to each
other. This will cause an extreme AXT (alien crosstalk) between the two.

Specifically, the steps to create these are such:
1. Remove about 10cm of the shield from two different Ethernet cables
1. Untwist one pair out of each cable
2. Open the untwisted pairs into a loop, and bring the two loops close to one another

a. The closer they are the higher the BER
3. Both cables will interfere with each other as long as both are connected to active Gigabit

Ethernet ports on both sides.

The picture below illustrates the two loops created in our setup:

Logically, one cable is considered the aggressor which causes the interference, and the other is the
victim which experiences it. The aggressor doesn’t need any actual Ethernet frames traversing it - the
idle signal between 2 active ports is good enough.

In the example of the setup above, the AXT crosstalk had turned out to be about 20dB between the 2
pairs! That’s similar to the attenuation of a long 90m Cat 5e cable! This can be seen in the screenshot
below:

EtherOops – ©2020 ARMIS, INC. – 25 TECHNICAL WHITE PAPER

As such, if the reproduction victim cable is connected in series (discussed below) to a long cable that
already introduces attenuation, the injected noise is guaranteed to be as strong as the signal -- thereby
causing the desired bit flips.

The short model

A more common failure mode of Ethernet cables is due to an internal short of one of the wires to the
grounded shield of the cable. We tested this type of failure while using the cable with a Gigabit Ethernet
configuration. Such a failure should still allow a high-speed transmission, but will cause significant
degradation.

The intentionally created short to ground, in our setup, is close to the victim’s receiver terminal. As in
the previous example, this cable is connected in series with a longer cable (60m in the case of our setup)
in order to add extra attenuation.

EtherOops – ©2020 ARMIS, INC. – 26 TECHNICAL WHITE PAPER

The short to ground causes several different influences on the cable. It is an impedance mismatch that
causes signal reflection, it causes an attenuation due to a pull to the ground, it emits EMI and it is also
susceptible to EMI. Due to the complexity of the phenomenon, the significance of this effect may
depend on many parameters, including the exact number of wavelengths the short lies from the
terminal. In our example, the short to ground caused an additional attenuation of about 10dB, and
increased EMI susceptibility.

The following network analyser screenshot shows the cable attenuation for a 60m cable (in blue), before
the pair was shorted to the shield:

Whereas, below is a screenshot after the short to the ground was added:

A high level of reflections and significantly increased attenuation is observable in this second shot.

EtherOops – ©2020 ARMIS, INC. – 27 TECHNICAL WHITE PAPER

Model scenario for cables connected in series

So far we’ve analyzed and referred to Ethernet cables according to well known parameters and

specifications. However, for the purposes of the Packet-in-Packet attack described in this paper, a

“cable” is just an abstraction. In practice, a “cable” is whatever physically connects 2 active Ethernet

ports one to the other. In reality, this is rarely an actual single cable.

It is very common, in fact, for cables to be connected in series via wall sockets and patch panels. The

most common scenario for connecting endpoints would be something similar to this:

In the illustrated case, an endpoint device is connected via an edge cable (C1) to a wall socket. The wall

socket is an RJ45 female socket, which internally wires the attached cable to another cable, C2, which is

a potentially long cable that runs through the walls, and into a comms room. There, the cable run is

wired into a patch panel, where another RJ45 female socket accepts a patch cable (C3) that finally

connects to the Ethernet switch.

This entire series of interconnections actually consists of 3 cables, 4 RJ45 jacks, and 2 RJ45 sockets. Since

all of this is connected passively in series, it can simply be seen as a single long “cable”, for the purposes

of the discussed attack. A fault in any of these components can be seen as a fault in this single long

“cable”.

Impedances add up in series. Therefore, if C2 is a long, yet high quality cable, it will still contribute a

significant amount of impedance to the entire cable run. If, for example, C1 is a faulty cable -- the

receiver on the endpoint will effectively “see” a long faulty cable attached to it. High impedance means

a smaller differential noise margin (as explained earlier), and a fault means that weaker interference can

impact the cable. Together, these factors result in an elevated bit error rate (BER) for the receiver,

allowing the Packet-in-Packet attack.

EtherOops – ©2020 ARMIS, INC. – 28 TECHNICAL WHITE PAPER

Connections between 2 on-site network appliances (such as between 2 network switches), follow a

similar pattern. There will be 2 patch panels involved, in 2 separate comms rooms. Therefore, the

scenario described above is probably the most common way devices are wired on a network.

This makes it easier to see why in a small, yet significant percentage of cases, the BER on a switch port is

much higher than allowed by the standard.

Primitives for a 0-click attack

In the “1-click attack scenario” section above, an attack that required user interaction was described.

The user needed to visit an attacker controlled web page, so that a UDP packet would be sent through

their firewall/NAT to an attacker controlled server. This was done in order for the attacker to know a

UDP IP/port 4-tuple that’s allowed through the firewall, and that the NAT would translate to the user’s

internal address. This is simply how “outgoing connections” work. While UDP is a connectionless

protocol, there is still a concept of a “connection” when it comes to firewalls/NATs. The existence of a

connection is simply determined by a unique address/port 4-tuple and a timeout from the last packet

that was sent as part of the “connection” (a few minutes, usually).

Without knowing an IP/port 4-tuple that the NAT would direct to the victim’s internal address, an

attacker could never send any packets that would reach the victim over the faulty cable. In the 1-click

scenario, the attacker created a new 4-tuple with a known value, since the attacker's server was simply

the other side of the connection. However, a new connection is not required, if the following conditions

are met:

● The attacker is able to guess an already existing 4-tuple that the NAT already directs to the

victim.

● The attacker is able to spoof IPv4 source addresses in packets sent over the Internet, in order to

create packets with that same 4-tuple

Spoofing IPv4 source addresses on the Internet

While most VPS/cloud providers do not allow outgoing IPv4 packets with a spoofed source address, this

is usually a limitation imposed by the provider itself, or their ISP.

Naturally, this means that some providers still allow this capability, either because they don’t care, or

because they cater to certain clients whose DDoS attacks depend on being able to spoof source

addresses. For example, SSDP DDoS attacks.

In 2020, it’s no longer very easy to just stumble upon such a provider. However, if you limit your search

to Russian providers, and look for reviews that talk about this “feature”, you can still find some,

although they won’t advertise themselves as such. We’ve found and used one that is a fairly serious VPS

provider, and is operating for more than 10 years. As far as we know, they have never disallowed IP

spoofing for outgoing traffic.

EtherOops – ©2020 ARMIS, INC. – 29 TECHNICAL WHITE PAPER

https://www.cloudflare.com/learning/ddos/ssdp-ddos-attack/

In order to test if your VPS is capable of spoofing, simply try to send an IPv4/UDP packet with a spoofed

source address using scapy to another VPS (from a different provider), and see if it arrives.

Google DNS 4-tuples

Armed with the ability to spoof source IPs on the Internet, the attacker now needs to guess a 4-tuple

that’s allowed through the firewall and will be directed to the victim by the NAT.

DNS is a request-response protocol that uses UDP packets sent to port 53. On a given network, all

devices are usually configured to use the same DNS servers. As far as we know, Google DNS, on the IP

address 8.8.8.8 is the most popular DNS resolver on the Internet. Some networks do not use an Internal

DNS resolver, but rather, set 8.8.8.8 to be the resolver for every device on the network directly.

Additionally, this address is sometimes hard coded to be the DNS resolver of some devices. As a result,

every DNS request out of such a network will have a 4-tuple with predictable components:

● Dest IP is 8.8.8.8, source IP is the external address of the network (considered to be known)

● Dest port is always 53

● The only unknown part is a 16-bit source port

While this does mean that there can only be about 64K concurrent DNS requests on such a network,

that’s not a real problem, since functionally, DNS request-response “connections” are very short. Less

than half a second in pretty much all cases. For firewalls/NATs, however, there is an additional problem.

They only see DNS traffic as generic UDP packets, they are not aware that these packets are DNS.

Therefore, as far as they’re concerned, each such “connection” will last a few minutes before it times

out. Luckily, this is also not a functional problem, because when all 64K source ports are exhausted by

these “concurrent connections”, the NAT in question simply throws out the oldest ones for the sake of

new ones to be established.

In this case, if an attacker simply iterates through all possible source ports, they can send UDP packets to

random machines on the internal network! The only condition is that those machines have performed

some DNS requests to 8.8.8.8 in the last few minutes.

Spoofed packets from 8.8.8.8 sent to victim NAT to all Dest Ports

EtherOops – ©2020 ARMIS, INC. – 30 TECHNICAL WHITE PAPER

Some of those traverse the NAT to random Dest IPs on the LAN!

Most conveniently for the attacker, when those spoofed UDP packets do traverse the NAT/firewall, they

are considered to be valid traffic of each of those UDP “connections”, thereby preventing the timeout

from closing the connection. Therefore, an attacker that keeps iterating overall source ports will only

increase their throughput over time, until all possible DNS 4-tuples become used for sending attacker

packets into the internal network.

It is important to see that this method is not entirely useful for our Packet-in-Packet attack, since the

packets will be sent to random destinations on the internal network. The attacker must choose a single

internal destination in advance, as they have to know the MACs in the packet headers. Those MACs will

obviously be different in all those random destinations. Knowing which source port is the “right” one to

reach only the desired destination is not possible as long as there is no feedback to the attacker. We

didn’t find any method to receive such feedback without additional prerequisites.

It is possible, however, to receive this feedback in a proximity attack scenario involving sniffing

encrypted Wi-Fi packets, as will be discussed in a later section.

Alternative method: ICMP errors

There is an additional primitive we’ve found that enables us to perform the above attack without

needing a VPS provider that allows IP spoofing on the Internet.

The spoofed packets discussed above traverse the firewall/NAT since they are part of an ESTABLISHED

“connection”. However, there can be “RELATED” packets as well. For example, for every UDP

“connection”, there are ICMP error packets that can be RELATED to it. A simple case is when sending a

UDP packet to a closed port. This results in an “ICMP destination unreachable packet”, sent back to the

client from the destination host. The NAT/firewall is aware of the ICMP protocol, and will direct those

packets to the correct internal host.

ICMP error packets always include the packet headers of the packet that caused the error. This is where

the NAT/firewall takes the information from about which UDP/TCP 4-tuple this ICMP error packet is

RELATED to.

EtherOops – ©2020 ARMIS, INC. – 31 TECHNICAL WHITE PAPER

Some ICMP errors, like the one above, may arrive from an intermediate router, rather than the

destination host. The above packet is a “TTL exceeded” error, that can arrive from any router between

the client and destination server. Therefore its source IP address can be any valid address! The IP

address used to identify the RELATED 4-tuple of this ICMP error is taken from the internal IP header

that’s included in the ICMP error payload!

Therefore, instead of sending spoofed DNS responses to the victim’s external IP address, The attacker

will send “ICMP TTL exceeded” packets that are RELATED to the guessed DNS 4-tuple. This means that

spoofing the source IP of those packets is no longer needed!

However, a downside of this method is that RELATED packets won’t keep the UDP “connection” alive as

far as the NAT/firewall is concerned, and it will time out after a few minutes.

Finding MAC addresses

As mentioned previously, the attacker must know the MAC addresses that appear in the layer 2 headers

of the original packet that’s meant to traverse the faulty cable. One of these MAC addresses is the MAC

of the destination device (the victim), and the other is of the nearest router to the victim. On smaller

networks, that router is usually also the NAT/firewall device that’s on the edge of the network.

There is no way, that we know of, to learn those MAC addresses from the Internet directly, or via some

web browser based primitive. However, MAC addresses are not considered to be a secret by any threat

model, and they were not designed as such.

In some cases, it’s fairly easy to guess them. For example, take a non-Internet attack scenario. An

attacker is inside a DMZ, within zero hops from the firewall. This attacker is part of the same layer 2

network as the WAN interface of the firewall device. Therefore, the attacker knows the MAC address of

this interface. This is very useful to the attacker, since as is the case with most network equipment, the

MAC addresses of all the interfaces of the same equipment are adjacent. This is also the case with most

EtherOops – ©2020 ARMIS, INC. – 32 TECHNICAL WHITE PAPER

firewall appliances. Therefore, it’s easy to guess the MACs of the other interfaces of the firewall by

simply knowing one.

Discovering MACs from Wi-Fi monitor mode

A very practical approach to discovering the internal MAC addresses inside a network is via Wi-Fi

sniffing, when the wireless access points of the target network are bridged to the wired network. Even

on encrypted WPA2 networks, the MAC addresses appear in plain text over the air. Therefore any

attacker in physical proximity to the network can sniff them using commodity hardware.

Since the APs are bridged to the wired network, the MACs in the air are exactly the same MACs that

appear on the wired network, inside the Ethernet frames that are exchanged with the wireless APs.

Sniffed 802.11 data frames

5 MAC addresses appear in each frame in plain text

In the screenshot above, we have five MACs for every 802.11 frame, of which one is always the MAC of

the wireless device, and another is always the MAC of another device on the network -- be it wired or

wireless.

In the case above we have a Xiaomi phone talking to a Fortinet firewall, which is its default gateway to

the Internet. These are the two MACs that appear in any Ethernet packet coming from the firewall to

the device when traveling over the wired network on the way to the access point.

While this scenario requires physical proximity to the network in order to learn the MAC addresses, this

only needs to occur once. An attacker that has arrived on site and logged all visible MAC addresses in

the air, can use them in any later attack since MAC addresses never change.

EtherOops – ©2020 ARMIS, INC. – 33 TECHNICAL WHITE PAPER

Discovering allowed traffic through the firewall using WiFi sniffing

In the previous sections 2 important primitives were presented:

1. Sending packets from the Internet to random devices behind a firewall, by guessing predictable

UDP 4-tuples that were recently allowed through the firewall

2. Ability to sniff MAC addresses from Wi-Fi by being in physical proximity to the target

network/device

The latter primitive can actually be expanded a bit, as WPA2 encrypted data frames reveal more than

just the plaintext MACs of the devices -- they also reveal the length of the plaintext packets. This is

simply because the length of the plaintext packets matches the length of the encrypted packets.

Armed with these 3 primitives, it’s now possible to devise a method to send packets from the Internet to

a particular device behind a firewall, given the following conditions:

1. The target device uses Wi-Fi to connect to its internal network.

2. The target device uses Google’s DNS resolver (8.8.8.8).

3. The attacker is in physical proximity to the target’s Wi-Fi AP.

Given the above conditions, the attacker will be able to learn the MACs of both the target device, and its

closest router, using the Wi-Fi monitor mode. To be clear, this information will be enough to later

perform a Packet-in-Packet attack on any cable on the way from the router to the target AP.

The method works as follows:

1. The attacker will be sending spoofed packets from 8.8.8.8 over the Internet to the external IP of

the network.

a. The attacker controls the dest port (16 bit) and the length of every packet.

b. The only variable in the UDP 4-tuple of these packets is the dest port, the rest are fixed

and known.

2. The attacker creates a histogram of packet lengths normally seen in the air, and chooses the

length that has the lowest occurrence. The distribution of packet lengths on a network is not

random, and therefore good candidates are guaranteed to exist.

3. The attacker sends a spoofed packet of this length to every possible dest port to the external IP

of the network, iteratively, in a loop.

4. The encrypted version of some of these packets, with this exact length, will appear in the air,

and should be detectable over time.

5. The attacker then halves the dest port range, and starts iterating over that.

a. If the correct dest port is in the range, the packets of the chosen length will become

more detectable above the background noise, since there are now fewer possible ports

overall, and therefore more packets hit the correct port.

b. If the correct dest port is not in the range, the chosen length packets will not be

detectable over background noise

EtherOops – ©2020 ARMIS, INC. – 34 TECHNICAL WHITE PAPER

6. The attacker will continue this in a binary search pattern, until the correlation between dest

ports and wireless device MACs is established.

At this point, the attacker will be able to send benign UDP packets, with known MAC addresses and

controlled payloads over the Ethernet cables leading from the router to the AP. By continuously sending

these packets, the attacker will also cause the NAT/firewall to keep this UDP 4-tuple alive forever,

allowing the attack to take as long as necessary.

Proximity attack using an EMP device

The method described in the previous section basically allows an attacker in proximity to a Wi-Fi AP to

send benign UDP packets, with a controlled payload, over the Ethernet cables leading to that AP.

If one of those cables proved to be faulty, this would make for a practical attack. However, most cables

are not faulty, and the attacker has no way to know which is which in advance.

Faulty cables, as defined earlier in this paper, are cables that are susceptible to reasonable

electromagnetic interference. However, what about unreasonable interference? An unshielded cable,

even if not faulty in itself, given an already attenuated signal, should become susceptible at higher

interference levels.

Since physical proximity is already part of the requirements for this version of the attack, the attacker

might as well bring extra equipment in order to artificially induce powerful interference, such that it

would affect even non-faulty cables.

This sort of equipment would most likely be referred to as an EMP weapon. These devices are usually

designed to kill electronic circuits at a distance. They operate by sending very short but very powerful

wideband bursts of radio, commonly in the 100MHz to 2GHz range. The wavelengths in this frequency

range just about match the lengths of wiring inside various equipment. At high enough power levels, any

such wire effectively becomes an antenna, such that it will apply voltages to random parts of circuits...

With high enough power, this is meant to permanently destroy electronics.

In the case of our attack, we don’t need to destroy anything. All that’s required is to interfere with

already attenuated signals inside unshielded Ethernet cables. The only protection against interference in

such cables is the twisted pair geometry itself, which is in practice not enough for high EMI levels.

Prior research on “EMP simulation” devices

The correct search keywords for finding information on building high power wideband interference

sources are “EMP simulation”, as this is the only justified use for building such devices outside of military

uses. Some modern equipment is designed to be protected from high power EMI interference, and

therefore needs to be tested under those conditions. Therefore, “simulation” devices are built-in

academia and certain private sector entities for this purpose.

Of course, there isn’t any difference between a “simulation” device and a real one. Below are a few

references to papers describing the design of various components of such devices:

EtherOops – ©2020 ARMIS, INC. – 35 TECHNICAL WHITE PAPER

1. A Peaking Switch to Generate a High Voltage Pulse of Sub-nanosecond Rise Time [2012]

2. Self contained source based on an innovating resonant transformer and an oil peaking switch

[2011]

3. An oil peaking switch to drive a dipole antenna for wideband applications

4. Generation of sub-nanosecond pulses using peaking capacitor [2016]

5. Impulse Electromagnetic Interference Generator [2004]

6. A 500Kv pulser with fast rise time for EMP simulation [2013]

7. Analysis of half TEM horn antenna for high power UWB system [2017]

These papers mostly describe a very similar device. A low inductance capacitor is charged to about

500kV, then it is discharged very quickly via a fast spark gap (in transformer oil or compressed gas) in

parallel to a wideband antenna. The rise time of the discharge current is below 1 nanosecond, resulting

in a wideband burst of radio up to GHz frequencies. This cycle is repeated at tens or hundreds of Hz, in

order to maximize the odds of inducing damaging voltages in victim circuits.

The power levels described are indeed very high, but for the purposes of our research, should not be

required.

Wideband interference generation using a spark-gap radio transmitter

The earliest type of radio transmitter, invented in the late 19th century, isn’t in fact very different from

the description above.

Spark-gap radio transmitter, from Wikipedia

EtherOops – ©2020 ARMIS, INC. – 36 TECHNICAL WHITE PAPER

A similar design can be used in order to create a controlled experiment device that will work as an

interference source at a distance of a couple of meters from an unshielded Cat6 cable.

Disclaimer: Building such a transmitter today is quite easy, yet extremely dangerous. The voltages

used can kill a person instantly, and capacitors will store those voltages even when the device is

turned off. No one should attempt to build this device without prior high voltage experience.

In order to build such a device today, off the shelf components can be used to create a 20kV DC power

supply. The RF parts of the circuit are simply high voltage capacitors that can be found on Digikey, and a

custom made antenna. The spark gap can be a simple open-air gap, which will have a rise time of 5-10ns

(as observed experimentally by us). This will create powerful wideband noise in the 50MHz-150MHz

range.

The more current that the power supply can provide, the higher the rate of discharges will be, since the

capacitor will be charged faster in every cycle.

If the rate of discharges becomes too fast, the air between the spark gap electrodes can become

continuously ionized, creating a plasma that does not disappear between discharges, but rather acts as a

dead short preventing the capacitor from charging in the first place. This must be prevented by keeping

the rate slow enough, limiting the RF output power.

Modulating the on/off time of the power supply can help with keeping the air from becoming

continuously ionized. This allows increasing the individual power of each pulse, by lowering pulse the

repetition rate.

EtherOops – ©2020 ARMIS, INC. – 37 TECHNICAL WHITE PAPER

On the left: The controlled experimental setup of the EMP device. On the right: Spark gap in operation.

The setup is located in an underground fortified room acting as a makeshift Faraday cage

EtherOops – ©2020 ARMIS, INC. – 38 TECHNICAL WHITE PAPER

The transmission spectrum of this EMP device is shown below:

Transmitter turned on

Background spectrum

The power levels shown can be disregarded, as the wideband pulses are very short (mere nanoseconds),

the repetition rate isn’t very high (1 kHz or so), and these spectrum analyzer graphs show power

averaged over time.

Experimentally, this device was powerful enough to cause a very high error rate on an unshielded 10m

long Cat6 cable in the same room with the device. Analysis of the transmission power and effect on

cables will be elaborated upon later.

Attack model and experimental setup

Using all the attack primitives that were discussed in this paper in previous sections, it’s now possible to

devise an end-to-end proximity attack. The model for our experiment is as follows:

EtherOops – ©2020 ARMIS, INC. – 39 TECHNICAL WHITE PAPER

The attacker is physically located in proximity to the Wi-Fi AP, such that they can sniff encrypted packets

via monitor mode, and also be located near the AP’s Ethernet cable. The attacker also has a server on

the Internet, and is able to send packets to the external IP of the target network, hitting the firewall.

In our experiment, the EMP device is located 2.5m from the target cable, as shown in the following

photograph of our experiment:

Left: victim machine associated with AP. Right: AP and 10m Cat6 UTP cable

The target cable in this scenario is the 10m Cat6 UTP cable (blue cable in the setup), which is located in

the test room. The cable is then connected to a wall socket, which then attaches this cable in series with

a 60m shielded Cat 7 cable that runs through the walls up to the nearest switch. Therefore, the signal

inside the target UTP cable is already attenuated. Attaching cables “in series” by using wall sockets and

patch panels was discussed in the “Model scenario for cables connected in series” section.

As in all previous scenarios in this paper, the purpose of the attack is to inject fully controlled Ethernet

packets into the target network. In this case, these will be injected downstream from the AP’s cable,

therefore affecting the AP and all its associated devices.

EtherOops – ©2020 ARMIS, INC. – 40 TECHNICAL WHITE PAPER

The steps to perform this attack are as follows:

1. The attacker arrives on site and approaches a candidate Wi-Fi AP that’s connected via an

unshielded cable. The attacker gets physically close to the cable on the AP’s end.

2. The attacker listens in Wi-Fi monitor mode, and collects the plaintext MACs of potential target

wireless devices and their closest router.

3. The attacker begins sending spoofed UDP packets from their Internet server to a predictable

UDP 4-tuple on the external Internet IP address of the target network, such as spoofed Google

DNS response packets (as discussed in a previous section)

4. The attacker then looks at the lengths of the encrypted 802.11 frames in the air, and uses the

algorithm described in the section “Wi-Fi sniffing assisted discovery of allowed firewall 4-tuples”

in order to find a single correct UDP 4-tuple that is directed by the NAT to one of the target

devices that are currently visible in the air.

a. At this point, the attacker can now send benign UDP packets, with controlled payloads,

to a device behind the Wi-Fi AP. Additionally, the MACs are now known.

5. Then, the attacker begins sending lots of UDP packets with the Packet-in-Packet payload to the

discovered UDP 4-tuple, at high throughput, from the Internet.

6. In parallel, the attacker powers on the EMP device, and waits for a bit flip to occur on the

unshielded cable. The EMP is continuously sending out pulses at a high rate.

7. Once a bit flip occurs on the SFD byte of an Ethernet frame, the Packet-in-Packet condition is

achieved, and a fully controlled packet is injected!

8. Since to the AP this newly injected packet is not distinguishable from any other packet from the

wired network, it will encrypt it and send it wirelessly to all associated devices.

9. If the injected packet was an IPv6 RA, it will now configure the DNS, routing and search domain

of those devices.

Interestingly enough, the Wi-Fi signal doesn’t appear to be much affected by the EMP interference in

our experiment! Mainly because the output of the described EMP device is centered around the

100MHz range, and the Wi-Fi AP operates above 5GHz. In any case, 802.11 (Wi-Fi) actually has a

retransmission mechanism for layer 2 packets, therefore even if the Wi-Fi signal is affected along with

the signal on the Ethernet cable, the injected packet will be retransmitted on the Wi-Fi channel as many

times as needed for it to arrive!

This is indeed a fairly complex attack, however, all of these steps were performed in a lab setting

successfully. A video of this demonstration is available here.

EMP pulse measurements

To try and better understand the effect of the EMP device on UTP cables, certain limited measurements

were performed. First, an oscilloscope probe loop was placed 2.5 meters from the device:

EtherOops – ©2020 ARMIS, INC. – 41 TECHNICAL WHITE PAPER

https://youtu.be/VO7x-kKkddQ

Standard oscilloscope loop shorted to its own ground, exposing a single unshielded loop

The result is visible above. The device induces voltage pulses in the loop of wire, such that they

correspond to the main frequency (80MHz) shown in the spectrum analyzer screenshots. The waveform

here gets up to 600mV peak-to-peak. As a reminder, the noise margin at the receiver of a long Ethernet

cable can be as low as 40mV. Of course, this is the noise margin for the differential signal, and the

above represents the level of common mode interference.

Another experiment was performed, where the 2 wires of a twisted pair inside of a 10m Cat6 UTP cable

were connected to 2 separate oscilloscope channels. The math function of the scope was utilized in

order to see the differential signal by subtracting the 2 voltage levels.

EtherOops – ©2020 ARMIS, INC. – 42 TECHNICAL WHITE PAPER

Here too, the EMP pulse is visible, however, it is different enough between the 2 wires of the pair such

that it causes a differential signal as well.

EtherOops – ©2020 ARMIS, INC. – 43 TECHNICAL WHITE PAPER

Conclusion

The most surprising element of this research is that network performance issues, such as the amount of
bit-errors experienced on a network’s cables might also pose a security risk to the network itself. This
requires the development of mitigations in network infrastructure devices that deal with this specific
attack, but also offer better ways to detect edge cases that might arise in Ethernet communications.

As always, further research is required. For instance, our controlled experiment, using an EMP device to
induce bit errors on non-faulty Ethernet cables, was not tested to the extent of this capability. We do
not yet know whether this capability can become a dangerous and effective weapon, if perfected, and
what is the maximum distance in which this attack can be successful. A better understanding of how EMI
attacks can impact Ethernet cables is far from complete.

Our research was able to challenge many of the prerequisites that are required for a successful Ethernet
Packet-in-Packet attack to take place. However, future research might be able to tackle some of these
limitations in different ways, that might make this type of attack a much more accessible, and dangerous
threat. Advancing defense capabilities in network infrastructure devices, and preventing this attack from
becoming a threat is a challenge worth pursuing.

EtherOops – ©2020 ARMIS, INC. – 44 TECHNICAL WHITE PAPER

